k-odd mean labeling of prism

Authors

b. gayathri

k. amuthavalli

abstract

‎a $(p‎,‎q)$ graph $g$ is said to have a $k$-odd mean‎ ‎labeling $(k ge 1)$ if there exists an injection $f‎ : ‎v‎ ‎to {0‎, ‎1‎, ‎2‎, ‎ldots‎, ‎2k‎ + ‎2q‎ - ‎3}$ such that the‎ ‎induced map $f^*$ defined on $e$ by $f^*(uv) =‎ ‎leftlceil frac{f(u)+f(v)}{2}rightrceil$ is a‎ ‎bijection from $e$ to ${2k - ‎‎‎1‎, ‎2k‎ + ‎1‎, ‎2k‎ + ‎3‎, ‎ldots‎, ‎2‎ ‎k‎ + ‎2q‎ - ‎3}$‎. ‎a graph that admits $k$-odd mean‎ ‎labeling is called $k$-odd mean graph‎. ‎in this paper‎, ‎we investigate $k$-odd mean labeling of prism $c_m times‎ ‎p_n$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

full text

Even vertex odd mean labeling of graphs

In this paper we introduce a new type of labeling known as even vertex odd mean labeling. A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f : V (G) → {0, 2, 4, . . . , 2q−2, 2q} such that the induced map f∗ : E(G) → {1, 3, 5, . . . , 2q− 1} defined by f∗(uv) = f(u)+f(v) 2 is a bijection. A graph that admits an even ver...

full text

further results on odd mean labeling of some subdivision graphs

let g(v,e) be a graph with p vertices and q edges. a graph g is said to have an odd mean labeling if there exists a function f : v (g) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : e(g) → {1, 3, 5,...,2q - 1} defi ned by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. a graph that admits an odd mean lab...

full text

Some Graph Operations Of Even Vertex Odd Mean Labeling Graphs

A graph with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f:V(G){0, 2, 4, ... 2q-2,2q} such that the induced map f*: E(G) {1, 3, 5, ... 2q-1} defined by f*(uv)=     f u f v 2  is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. In this paper we pay our attention to p...

full text

My Resources

Save resource for easier access later


Journal title:
transactions on combinatorics

Publisher: university of isfahan

ISSN 2251-8657

volume 4

issue 1 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023